PERATON Constructing a 1-Radian Angle

Carefully draw a large circle on a piece of paper, either by tracing around a circular object or by using a compass. Identify the center of the circle (O) and draw a radius horizontally from O toward the right, intersecting the circle at point A. Then cut a piece of thread or string the same size as the radius. Place one end of the string at A and bend it around the circle counterclockwise, marking the point B on the circle where the other end of the string ends up. Draw the radius from O to B.

The measure of angle AOB is 1 rad.

- 1. What is the circumference of the circle, in terms of its radius r
- 2. How many radians must there be in a complete circle?
- 3. If we cut a piece of thread 3 times as big as the radius, would it extend halfway around the circle? Why or why not?
- 4. How many radians are in a straight angle?

Trigonometry means <u>measurement of</u>	Triangles
In the space below draw a picture of an angle and	<u>label</u> the vertex, initial side and the terminal side.

terminal \
side \S 3:00 position
An <u>angle</u> is determined by rotating a ray about its endpoint. The starting position of the ray is the <u>linitial</u> of the angle, and the position after rotation is the <u>terminal</u> <u>side</u> . The vertex is the <u>endpoint</u> of the ray. An angle that fits the coordinate system in which the origin is the vertex and the initial side coincides with the positive x-axis is an angle in <u>standard</u> <u>position</u> . Counterclockwise rotation generates <u>positive</u> angles while clockwise rotation generates <u>peopline</u> angles
How are angles labeled?

greek letters d (vertex) Angles that have the same initial and terminal sides are called <u>coterminal</u> angles. In the space below draw an example of coterminal angles.

A measure of an angle is determined by the amount of rotation from the initial side to the terminal side.

One way to measure angles is in <u>rodions</u>. Another way to measure angles is in <u>dealy res</u>

 $ONO(e \Theta)$ that intercepts an arc S equal in length to the radius _ V of the circle.

In other words, $\theta = \frac{s}{s}$ where θ is measured in radians. (Note that $\theta = 1$ when s = r.)

Remember, the circumference of a circle is $2\pi r$ units and it follows that a central angle of one full revolution (counterclockwise) corresponds to an arc length of $s=2\pi r$. Also recall that there are approximately 6.38 <u>radius lengths</u> in a full circle ($2\pi \approx 6.28$).

Conversions Between Degrees and Radians

- 1. To convert degrees to radians, multiply degrees by $\frac{\pi \ rad}{180^{\circ}}$
- 2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{}$

Example 1: Express each of the following angles in radian measure as a multiple of π .

(Do not use a calculator.)

$$\frac{49}{18} = \frac{71}{3}$$
 rad.

$$\frac{38}{18} = \frac{14}{9}$$
 if rad.

c.
$$-30^{\circ}$$

-30 × TT

$$\frac{30}{180} = \left(\frac{71}{6} \text{ rad.}\right)$$

Example 2: Express the following angles in degree measure. (Do not use a calculator.)

a.
$$\frac{\pi}{Q}$$

b.
$$\frac{8\pi}{3}$$

Arc Length

For a circle of radius r, a central angle θ intercepts an arc length s given by $s = r\theta$ where θ is measured in radians.

Note that if r = 1, then $s = \theta$, and the radian measure of θ equals the arc length.

$$r = \frac{s}{\Theta}$$

Example 3:

A circle has a radius of 10 inches. Find the length of the arc intercepted by a central angle of 140°.

$$14\phi \times \frac{\pi}{18\phi} = \frac{14}{18} = \frac{7\pi}{9} \text{ rod} = \Theta$$

$$10\left(\frac{7\pi}{9}\right) = \frac{70\pi}{9} \text{ in.}$$

Linear and Angular Speeds

Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the arc traveled in time t, then the **linear speed** v of the particle is:

Linear speed
$$v = \frac{arc \ length}{time} = \frac{s}{t}$$
.

Moreover, if θ is the angle (in radian measure) corresponding to the arc length s, then the **angular speed** ω (the lowercase Greek letter omega) of the particle is:

Angular speed
$$\omega = \frac{central\ angle}{time} = \frac{\theta}{t}$$
.

Example 4:

The second hand of a watch is 1.3 centimeters long. Find the linear speed of the tip of this second hand as it passes around the watch face.

$$\frac{\partial(\pi)(1.3)}{\partial m} = \frac{\partial .6\pi cm}{\partial m} \times \frac{1}{60} \frac{m}{sec} \rightarrow \frac{\partial .6\pi cm}{\partial m} = \frac{0.136}{60} \frac{cm}{sec}$$

Example 5:

The circular blade on a saw rotates at 4200 revolutions per minute. (rpm) each rev = 3 77 rad

a. Find the angular speed in radians per second.

b. The blade has a radius of 6 inches. Find the linear speed of a blade tip in inches per second.

A Sector of a circle is a region bounded by two radii of the circle and their intercepted arc.

Area of a Sector of a Circle

For a circle of radius r, the area A of a sector of the circle with central angle θ is:

$$A = \frac{1}{2}r^2\theta$$
 where θ is measured in radians.

7

Example 6:

radius

A sprinkler on a golf course is set to spray water over a distance of 75 feet and rotates through an angle of 135°. Find the area of the fairway watered by the sprinkler.

$$135 \times \frac{\pi}{180} = \frac{3\pi}{4} \text{ rad.} = \Theta$$

$$A = \frac{1}{3}(75)^{3}(31/4) = 6636.797 ft^{3}$$